Interrogation rapide $n^{\circ}5$

1heure

I Questions de cours

6 points

- 1. Donner la définition de l'espérance d'une variable aléatoire.
- 2. Compléter la définition ci-dessous :

Soit $\Omega = \{\cdots\cdots\cdots\}$ un $\cdots\cdots\cdots$ donné et P une probabilité définie sur $\Omega.$

Soit X une variable aléatoire discrète à valeurs dans $\{\cdots\cdots\cdots\cdots\}$.

Définir la loi de probabilité de la variable aléatoire X revient à donner

la probabilité de chacun des événements $\cdots\cdots\cdots\cdots\cdots$, pour $1\leqslant i\leqslant k.$

En général on donne la loi de probabilité à l'aide d'un tableau :

II Exercices 14 points

Exercice 1

Donner les expressions des fonctions dérivées des fonctions d'expressions suivantes :

1.
$$f(x) = -2x^3 + 5x^2 + 1$$

2.
$$g(x) = \frac{5}{x} + 2x^4$$

Exercice 2

Donner l'équation de la tangente au point A(1; f(1)) à la courbe C_f avec f la fonction définie par l'expression $f(x) = 2x^4 - 5x + \frac{1}{x}$.

Exercice 3

Décrire une expérience aléatoire qui nous amène à avoir une variable aléatoire dont la loi est une loi de Bernoulli. On donnera aussi l'espérance de cette variable aléatoire.

Exercice 4

Un jeu consiste à lancer un dé non pipé.

- si le joueur obtient un 1, il perd 30 €
- si le joueur obtient un 2, il perd 20 €
- si le joueur obtient un 4, il ne perd ni ne gagne rien
- si le joueur obtient un 3, un 5 ou un 6, il gagne 30 €

Soit X la variable aléatoire indiquant le gain (positif ou négatif) du joueur.

- 1. Donner la loi de probabilité de X.
- 2. Calculer l'espérance de X.

BONUS

Dans une fête foraine, pour une mise initiale de 3 euros, le joueur est invité à lancer deux dés équilibrés à six faces numérotées de 1 à 6.

- Si le résultat est un « double », le joueur gagne le montant en euros égal à la somme des points obtenus.
- Si un seul 6 apparaît, le joueur gagne le montant en euros indiqué sur l'autre dé.
- Dans les autres cas, la partie est perdue. On désigne par G la variable aléatoire définie par le « gain » du joueur (gain qui peut être négatif et qui correspond à ce que le joueur a gagné moins sa mise).
- 1. Compléter le tableau à double entrée ci-dessous donnant les valeurs du gain suivant les issues possibles de cette expérience aléatoire).

Dé 2 Dé 1	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

- 2. Déterminer la loi de probabilité de G.
- 3. Calculer l'espérance mathématique de G
- 4. Le jeu est-il équitable?